Residual driven online mortar mixed finite element methods and applications
نویسندگان
چکیده
منابع مشابه
Residual-driven online generalized multiscale finite element methods
The construction of local reduced-order models via multiscale basis functions has been an area of active research. In this paper, we propose online multiscale basis functions which are constructed using the offline space and the current residual. Online multiscale basis functions are constructed adaptively in some selected regions based on our error indicators. We derive an error estimator whic...
متن کاملBalancing domain decomposition for mortar mixed finite element methods
The balancing domain decomposition method for mixed finite elements by Cowsar, Mandel, and Wheeler is extended to the case of mortar mixed finite elements on non-matching multiblock grids. The algorithm involves an iterative solution of a mortar interface problem with one local Dirichlet solve and one local Neumann solve per subdomain on each iteration. A coarse solve is used to guarantee that ...
متن کاملInterior superconvergence in mortar and non-mortar mixed finite element methods on non-matching grids
We establish interior velocity superconvergence estimates for mixed finite element approximations of second order elliptic problems on non-matching rectangular and quadrilateral grids. Both mortar and non-mortar methods for imposing the interface conditions are considered. In both cases it is shown that a discrete L2-error in the velocity in a compactly contained subdomain away from the interfa...
متن کاملA Multiscale Mortar Mixed Finite Element Method
We develop multiscale mortar mixed finite element discretizations for second order elliptic equations. The continuity of flux is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. The polynomial degree of the mortar and subdomain approximation spaces may differ; in fact, the mortar sp...
متن کاملSingular Function Mortar Finite Element Methods
We consider the Poisson equation with Dirichlet boundary conditions on a polygonal domain with one reentrant corner. We introduce new nonconforming finite element discretizations based on mortar techniques and singular functions. The main idea introduced in this paper is the replacement of cut-off functions by mortar element techniques on the boundary of the domain. As advantages, the new discr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2018
ISSN: 0377-0427
DOI: 10.1016/j.cam.2018.02.032